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ABSTRACT

The problem of finding algebraically special solutions to the

vacuum Einstein-Maxwell equations is investigated using the spin

coefficient formalism of Newman and Penrose. The general case in

which the degenerate null vectors are not hypersurface orthogonal

is reduced to a problem of solving five coupled differential

equations that are no longer dependent on the affine parameter

along the degenerate null directions.

It is shown that the most general regular, shear-free, non-

radiating solution to these equations is the Kerr-Newman metric.
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1. Introduction

The spin coefficient formalism of Newman and Penrose [ 1 ]

(hereafter referred to as (NP)) and its application by Newman and

Unti [ 2 1 have proven to be extremely valuable in a new approach to

the subject of equations of motion in asymptotically flat spaces

[3-5 ]. It has also recently been shown that asymptotically flat

spaces admit congruences of null geodesics which are asymptotically

shear-free, but twisting [6].

For these (among other more general) reasons, it is felt that

a presentation of the spin coefficient formulation of the shear-free,

twisting solutions to the vacuum Einstein-Maxwell equations might

be particularly appropriate at this time. The results should be

useful in obtaining and studying equations of motion for charged

spinning particles and may also prove to be helpful in resolving the

still open problem [3,5] of finding a unique center of mass coordinate

system.

The class of algebraically special solutions to the empty space

Einstein equations admitting shear-free and diverging, but non-

twisting geodesic rays are the well known Robinson-Trautman metrics [7 ].

Both these metrics [8 1 and their Einstein-Maxwell counterparts [9 1

have already been presented in the (NP) formalism.

The general class of degenerate solutions to the vacuum Einstein

equations (admitting diverging and twisting, shear-free null geodesics),

first outlined by Kerr [210 , has been studied using the (NP) approach

by Talbot [11 1. These solutions along with the corresponding Einstein-
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Maxwell ones have also been investigated by Debney, Kerr and Schild [12]

and several explicit solutions have been given [13-15].

In this paper we use the (NP) spin coefficient formalism to

present the solutions to the vacuum Einstein-Maxwell equations which

admit congruences of shear-free, twisting null geodesics. The results

show that the entire class of solutions can be expressed solely in

terms of five functions (and their derivatives) that are independent

of the affine parameter along the geodesics. These functions satisfy

five coupled differential equations, the solution of which would then

completely determine the metric.

In Section 2 we formulate the problem in the (NP) formalism.

This is followed in Section 3 by further simplifications made possible

by the use of coordinate-tetrad freedom. Section 4 contains a

complete summary of all of the results and in Section 5 we show that

the most general regular, shear-free, non-radiating solution to the

remaining equations is the Kerr-Newman metric [16].

It is assumed that the reader is familiar with the operator

edth ( I ) and the concept of spin s spherical harmonics [17,18],

both of which will be used in this work. We will use the notation

that t applies to an arbitrary two-surface with the metric (in

conformally flat form)

ds2 [2 (X)Z td=cx/X3)

and that V% applies to the unit sphere.
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2. The Spin Coefficient Formulation of the Problem

Following Newman and Penrose [1] a null tetrad

im - w -- ( al,~ not , raid io ): is introduced in a four

dimensional Riemannian manifold with signature (+,-,-,-). The

tetrad is composed of two real null vectors .1 and a

and two complex null vectors m and i satisfying the

pseudo-orthogonality conditions

,7n -, ~ A / (2.1)

all other scalar products vanishing. Equation (2.1) implies the

completeness relation

z LI n 3C tr4.n) (2.2)

where '7 is the null Minkowski metric

~~7~ mJn 7%.-1O 1a" (2.3)
Dn0 0 0 -1

0 0 -1 0

used to raise and lower tetrad indices°

tTetrad indices, ranging over the values 1,2,3,4, will be denoted

by lower case Latin letters beginning with m. Tensor indices,

ranging over 0,1,2,3 will be denoted by Greek letters.
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From the tetrad we can define the Ricci rotation coefficients

M"p = M; Az p( vZ (2.4)

and the spin coefficients,

p 3= r ; m = -=3 = - nJl v Y2.4 27 '

Q= Y'/33 - Rc~v r!>cm , 2t = ~24 4 n ·j a 
(2.5)

-' Y/32 I ]; ron
"
, iT - Y2 4 - n; W vi7 r 

o5 ( rl24 - YX44) 4 2 (A. ;, Al v i- In,4)b

,= 2 ((YiZ3 - Y3s3) = ~ (2;, n',Mv m,,;, n rn /),

= 21 ( Y,22- Y13412)= Z' (~;v~n, 0 
~
-

- m,;y ,,~'n J ) .

Tetrad components of a tensor are defined by

Amn... =- A("' ~ Z (2.6)



and application to the Weyl tensor yields

Ao - - Cleer VP 00m- r

i = - C vp or 1 H n ' %

,i/2 - - Cx Yf r m =Pn , 6^, In (2.7)

YJ3 = Cn vp Q 2

Co 4 -- CP vnoc - NO~V n r.

Similarly, for the Maxwell tensor we have

+0 FM, I /77 "'

+1 = 2 F^-~cV(Rvoh R#>vJ~ ~ (2.8)

It is always possible to introduce a null tetrad and associated

null coordinate system X= U , / r, X2 , X 

in such a way that 2 is tangent to a congruence of null geodesics

with r a standard affine parameter along each of the geodesics labeled

by the remaining x .t Making this choice we find that

a_
0 = a r s: (2.9)

Js; y = °, (2.1o)

Lower case Latin letters from the beginning of the alphabet will

range over the values 0,2,3.and capital Latin letters over 2,3.
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and the tetrad has the form

.j = X C

MAC= co .7ga.6,44.

where U,X , c and a are arbitrary functions of the coordinates.

With the help of the completeness relation (2.2) we can write

RA;> = 1/ ul+ tatIP~ 4 f (e t ') 1. n'w- Jam(d )2X r - (a +,) JAC XA
~to WC eP"Al-~~~~~ m a ~(2.12)

from which we see that (2.10) can be expressed in terms of spin

coefficients as v+g- C= O and that the optical scalars which

characterize the geometrical properties of the congruence are related

to p and q- in the following way.

divergence: (-

curl (or twist): ,[2,v1 ;37 = -1P (2.13)

shear: 2j (F/ = " ,-

We now make our only assumption- namely that the congruence of

null geodesics with tangent vector 2 is shear-free, i.e.,

7-=O 0 (2.14)
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By a corollary of the Goldberg-Sachs theorem [19] the solution will

thus be algebraically special and characterized by the fact that

A will be tangent to a degenerate principal null direction of

the Weyl tensor coincident with one of the principal null direc-

tions of the Maxwell tensor, or equivalently /O = 0./ - - = 0O

Finally, we choose m and n to be parallely propagated

along Ro , i.e.,

" VRw t= i -r'777 - (e-) _ io = 0,

n~a; r JY o fC, , _ f ,, = UO

so that = fir= O.

The form of the tetrad and all of the above conditions will be

preserved under the following freedom still remaining in the choice

of the tetrad; the spatial rotation

J'a co (2.15)

depending on the real parameter C = C (x ) and the null rotation

R" A" r w he /4 ~ id + v . (2.16)

/7k = /n # _l 4+ BOg J#(,

tThe superscript 0 indicates independence of r.
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depending on the complex parameter B = B (x ). The coordinate

transformations

0r# Rb ) , X ./- X (2.17)

n , 4/
and rob / , X a 4- x (X 4 ) (2.18)

are also still available along with the combined coordinate-tetrad

transformation

= A J , = An , =fl B'

(2.19)
Ar O A°r , x A O ( X ' 1)

The (NP) formulation of the vacuum Einstein-Maxwell equations

consists of four sets of first order differential equations for the

four sets of variables; the spin coefficients (2.5), the Weyl tensor

components (2.7), the Maxwell tensor components (2.8) and the tetrad

components (or metric variables)(2.11).

By defining the intrinsic (or directional) derivatives acting

on a scalar I- by

D = (0 ;, ," ¢r_

= na- U- 1 + aa (2.20)

i+t A= J; ,a + a ,
koQP = ;, XK"m A'- GO a +r AS ,
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we could now write down the (NP) equations. In order to save space,

however, we simply point out that the appropriate equations can be

found in (NP)[1]t and are considerably simplified by the assumption

(2.14) that the space admits shear-free null geodesics, characterized

with our choice of tetrad by

c I = - = -= ) -= 0 o = -', . (2.21)

In the next section we write down only those equations necessary

to show how the remaining coordinate-tetrad freedom can be used to

make even further simplifications.

tIn (NP) the spin coefficient equations are given by (4 .2a)-(4.2r)

with 5 mn = k +h n (k is twice the Newtonian

gravitational constant G), the equations for the components of the

Weyl tensor by (A3) and for the Maxwell tensor by (Al). The metric

equations are obtained by applying the commutators (4.4) in (NP)

to each of the coordinates, u, r, x , respectively.
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3. Coordinate-tetrad Freedom

All of the (NP) equations can be divided into two groups, the

radial equations (in which the operator D appears explicitly) and

the non-radial equations (in which D does not appear). The radial

equations can be integrated directly with respect to r, thereby

introducing, in each case, functions of integration depending on

the remaining variables x . Substitution of the results of these

integrations into the non-radial equations then yields relations

among the functions of integration and the five differential equa-

tions mentioned in the introduction.

Because this procedure, although lengthy and quite tedious,

is entirely straight forward, the complete details (which may, in

any case, be found elsewhere [20]) will not be given here. In

fact, the solution of the following few equations alone (in addi-

tion to demonstrating the use of coordinate-tetrad freedom) should

provide a sufficiently clear understanding of what is involved in

the process. A complete summary of all of the results will be

given in the next section.

The equations whose explicit solutions we need to know now

in order to make further simplifications are the following:

DP = Pt 2, (3.1a)

Dr r= re , (3.lb)

~DD ~CC~~= go9~ AP~ ~(3.1c)

DX~; R = r a+ id 5 a (3.id)



Do- dp, (3.1e)

Di t8 p (3-1f)

DW = ; 6 - (a4 ts) , (3-1g)

D >, = 2 k,, (3.lh)

D P2z = 3 q1 + 2k 6,,, to (3.1i)

D/ = oti z+ + qJ2 + k , (3.1hi)

~D/us~ = /~P~~ f,~ ~2 , ~(3.1k)

Dk = r t -( ), (3. l)

g -= i P t (+ -d), (3.2a)

6 X^--A ga = (T- r'- ) Xa + ? ) (- + 7) -, (3.2b)

Equations (3.1a) and (3.lb) have the solutions

e--(r+ RO) and -r= TP . The coordinate transforma-

tion (2.17) can be used to make the real part of R° vanish so that

we may write

P= -(r'+ .-) -/ .(3.3)

with ~I a real function independent of r. Since 2 -°O = -O + ' O

under (2.16) this transformation can be used to put -0= 0,

Hence,

r = 0, (3.4)

and examination of the non-radial equation (3.2a) immediately tells
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us that

A= O , also. (3-5)

Incorporating these simplifications into the remaining radial

equations (3.1) yields the following results:

(3.6a)

(3.6b)

(3.1e) -

(3./f) -,

(3./9) -P-
(5.Ib)- -

oC= d°/ P 

= op0,

W = 60oF1 (io+ao60),
4)=pp 

(3./A:>" 0 5 2k, - 30(3. /;. --P- 2 = ~ / -~2 kI'/'q lf F o 5

(3.j ) --.-

-( (=) U =U° (bY+Y9r - (k t-_ ,U )-k P

The results given by (3.6) may now be substituted into the

non-radial equation (3.2b). Equating the coefficient of the r-l

term equal to zero yields

( Jao - bO]( az bo °
-

- 2 Xboyo = o 0
-l-+O B ] - 9_/ , b t b-

(3.6c)

(3.6d)

(3.6e)

(3.6f)

(3.6g)

(3.6h)

(3.6i)

(3.6j)

(3-7)

(3. c) - = .. 4,o I ,

(3i.d)-, X = X .

y_= °o 2/ Y p2+ k z °/ °p 2 2 I
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which is the only new information contained in (3.2b) not contained

in any other non-radial equation.

Under the transformation (2.18) Xat and Sa transform as

4,00
t
ox a ,0

so that the t/- {/'(Xa) transformation can be used to

put X 
0
into the form

X = ( I X2 , X 30 )

and the XA' XA'(X b) transformation to put 0

into the form

3.o= (L, p,~?P),

AO a
where X , L and P are arbitrary functions of the x

After introducing the complex variable § defined by

X= -A2 - X Xs (3.8)

we see that the form of ga will still be preserved under

further transformations of the type

(3-9)

prov~ided that ! satisfies

L / e2Pw~- (3.10)_ ~-'+ zp P-

where a dot above a quantity denotes w
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The complex quantity X- X2 - X39 will transform under

(3.9) as

-1
Xt- t X Ali tA ag (3-11)

and we will now show that (3.9) can be used to put X' = 0 while

still maintaining the form of G0 . It is clear from (3.10)

and (3.11) that this is equivalent to requiring the system of

linear equations

A, (£')= o,

Az ( ) = (3.12)

to have a non-trivial solution, where

AX , = ,^ X i+ X 

A, L,+ 2P .

Since the possession of a common integral by the equations

(3.12) causes them to vanish identically, the linear equation formed

by

As ( ') - A, (Az (E')) - Az ( A, ( ')) = O (3.13)

must also be satisfied by this integral, where

gL XA 3 = ( L fXa +2 P-ja .

-L(P L X + 2P All 

A+2PkA-~ 'c .
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By including (3.13) with the equations (3.12) we have constructed

a complete system of three homogeneous linear partial differential

equations for one function (~ ) of three independent variables

(.M$J'j ) .It is obvious that if all three equations are linearly

independent the only possible solution is the trivial one, E =

constant. On the other hand, if the three equations are linearly

dependent the original system (3.12) is then guaranteed one non-

trivial solution. (For complete details on this, see, for example,

Forsyth [21].)

The linear dependence of the equations is easily demonstrated

by virtue of equation (3.7), whose three components may now be

written as

0 °O+ * -2Y' L °e 2: =~' , (3.14a)

( )X- 4 -2(P+X X - X-2 , (3.14b)(Wo+~o)X-4Y°?=2(h+XP X~)-/-

6(co0+ )X = -2 X - · . (3.14c)

Multiplying (3.14a), (3.14b) and (3.14c) by t , and

- X , respectively, and adding yields

A3 (') = (.O+ pO)A&I[ ')-2 7Y- A 2 (') (3-15)

so that the original system (3.12) does indeed have a non-trivial

solution. Thus (3.9) can be used to put X' = O without disturbing

the form of gO and additional transformations of this type



must now be restricted to

(3.16)

where ~ is an analytic function of g

.CO
Under the tetrad transformation (2.15), p= C e

so that a suitable choice of CO can be used to put P = P. Under

(3.16), however P / P 7- so that whenever (3.16) is used it

must always be combined with another spatial rotation (2.15) in order

to keep P real. The complete transformation is

Le/= Y , r' t- r, e": ( )

I'd = A{U , n At 7 = n/'/ (3'17)

e my Lag/ a]

Because it will prove to be useful later on we introduce a new

function V at this time defined in terms of P by

P= Po V o =P 2 (/ ) , (3.18)

V and some other important variables transform under (3.17) as

V "
= V , Lr ;

1 (3.19)

where K = - J 
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The only other freedom left is the combined coordinate-tetrad

transformation (2.19), under which XO transforms as XOO
'

= AOX0 0 .

Therefore, in order to keep X
®
0 = 1 it is necessary to combine (2.19)

with an appropriate coordinate transformation in L The complete

transformation that accomplishes this is given by

u= G (u,,,e) , r
(3.20)

under which

L = L + G C
-

SG ,

rO ¢,o -2 o/2= *G-

G V& Y'zG

(3.21)

VVt= MUG-/ 92E= G-'
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4. Summary of the Final Results

In this section we summarize the shear-free, twisting solutions

to the vacuum Einstein-Maxwell equations.

A. Tetrad Components of the Weyl Tensor:

ko = L, = o , (4.la)

p + LP+ y + k P (D¢) + (4.1c)

4C$= t4 p PZ+t 2 t p 3 j 3 4 L t4P 5

+ k +, Pu~pt e + t to + 0s (4.ld)

with

3 = 3 2 + L 2 2 -3L t2 -3L V s (4.2a)

(y32 - 3s W 2 , (4.2b)

0- O

]zL SL3 4 V /39 T3 (4.2d)

P = @t3+L +3+6L Y>3-5L 6 V +6iWYJ3 (4.2e)

tL/4 = W 3 X (4.2f)
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Yt/ = @'2 + L 2 + 3L #2 -22 V

= 2 w +1 L/P +4L + -3 +2o W+Zw,,

- 2 -L +5 L
W= 0,: -+ 4L4> ;z 5L

with

+2- + L 0 V I2I

+.p = 2i W ic.

C. Spin Coefficients:

K= E = - = a- = - = A = 0 ,

eP= -(r+ -5)2 

+2 -4 L # 4L2
~2-4L 

8 = 6gx +2 

W-- 7 52 +L L- L V .

B. Tetrad Components of the Maxwell Tensor:

+0 = O,

+, = +? 2

(4.2g)

(4.2h)

(4.2i)

(4;'2j)

(4.2k)

O ,12 2 3
k2 = '2P +2P + O

(4-3a)

(4.3b)

(4.3c)

(4.,4a)

(4.4b)

(4.5a)

(4.5b)

(4.5c)

z+ 4iW



/3=p I

Yr = YO°-/- 2 p2+ k# 2, 0 ,

.( _- , + 2 ( P+e) + k 9 $, ° 63,o 2

o 2 ~ 3+/2 2 P32
v = v 0 4- V,0,0 4-h q ; P+ y 6 P+ k `r0)7(,2 

D. Metric Variables:

0-

U= U°+ V

X
' = (/,O

r = p (L

V
L - LV 

r - Re f52 4PJ- k ¢),O p F I

, O) .

, PI P).

E. Components of the Metric Tensor:

00
9 = -2 LL pp ,

9 0 1
= I-2Re(/i.p),

90

A 2Pp (-ReL,Z L),

9 I= 2(U--c),

'g9A 2 P - ee(w) , ImT (pp)],

9AB= _22 p2 ABA5-2P'e 

20

(4.5d)

(4.5e)

(4.5f)

(4.5g)

(4.6a)

(4.6b)

(4.6c)

(4.6d)

(4.7a)

(4.7b)

(4.?7c)

(4.7d)

(4.7e)

(4.7f)
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F. The Line Element:

ds s 2gAdx ){r -e LQ (r-2 r) 28 _- Uf ,)} crZ+ £2)* (4-8.)

{:APt<,dK ) J +· Re( -p) (4.8b)

G. Relations Among the Functions of Integration:

0( cA°= p- L V L2 L ), (4-9a)

°o =_ ( ,pl + ,-bL V) 9)

O °= t ° = ~ 2 VV X (4.9c)

WO°=-i (@ + L 4 2'2 L E-2 L V. (4.9d)

2u ; = f L - s, L - L , (4.9e)

°
/O= 'I,,)LU 0=_2) (4. 9g)

VO= V (4.9h)

V =h V 3 Lr~o/RL #?R~], (4.9i)

with hl O 1- PoV-V V- ' ( 4 o10a)

R_ So+ 4+ A/ 2 -2/V oJ t Po 1 (4.10b)

p Y+P ) (4.1Qc)Ij PO 13



H. Differential Equations:

f+4+ L ,?+2, L v-2LV = O,

#+° Lz -2L .=1 c2

ty 2 + L 42 + 3 L j 2l_3,V ° - 2k Z, · 9

0 ,0L +2C' 3 3L 0= 0-3 0k#

cP°- ,2 -2i[Re( W÷+L W+L W-2L-vW)-27 ULb].

22

(4 .ila)

(4.lib)

(4. ic)

(4. 11d)

(4. lie)

+° 2 V 
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5. The Kerr-Newman Metric

In this section we use the results of this paper to show that

the most general regular, non-radiating, shear-free solution to the

vacuum Einstein-Maxwell equations is the Kerr-Newman metric [16].

By regular solution we simply mean one for which the metric

has no angular singularities, or equivalently, that the functions

V and 9 are both expandable in spherical harmonics such that

0 < V< oo and ( has no zeros, where °O is a potential for

L [6] defined by

L = _- V O (5-1)

or,

,Do S c = O , (5.2)

where

o-o -o+V )a . (5.3)

Using the operator obO , the differential equations (4.11)

can be rewritten as

o g 2) X ] = 0 (5-4a)

ailVZoX3= LtV ( vz) v ( )(5.4b)
L vJof( v )Xti ]- ) (5.4c)

DoE [VR X I VZ3 + k(V Z )( 2 (5.4d)

lt{(QVZ )-xf Cx / 0 Z wcX 2 ; T ,J. , (5.4e)
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where

As B0 (/1 Pot) r (5-5a)

go .b0 X (5.5b)

v=L v()]7 I (5.5c)

and a new quantity

X I pV (5.6)

has been introduced. The functions % ( .) ' ( Vz ),

( ), R, N and V all transform as scalars under (3.20) so

that the equations (5.4) are all in a form that is now manifestly

invariant under that transformation. Also, from (5.2), we see

that we are free to replace ~ at any time by

c = ~F ) , (5.7)

where F is an arbitrary regular function of 

We now assume that there is no outgoing electromagnetic

radiation, i.e.,

+0 2 (5.8)

and that there is no Bondi news (hence, no outgoing gravitational

radiation) i.e.,

(5.9)
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It can be shown (not easily) that if the solution of this paper

is re-expressed in a Bondi-type frame then (5.9) would

read 0 = 0. t

Under the above assumptions we see immediately that (5.4c)

has the general solution (Z ) - M (k) X- 3 in which

(5.7) can be used to put M = 1, so that

( j) = - (5310)

(5.4d) then reveals that

it =o (5-11)

and the only freedom remaining in the choice of ~ is

W = a (P, (5.12)

where a is an arbitrary complex constant.

From (5.11) and the definition of R (5.5b), we see that

(5.9) becomes

os 0 (5-13)

which under the condition of regularity has the general solution

X = Xo + X,/ (5.-4)

t For more details concerning the relationship between asymptotically

shear-free, but twisting, congruences and twist-free, shearing ones

in asymptotically flat spaces the reader is referred to [61.



26

The subscripts refer to the R values of the subscripted quanti-

ties so that in this case, for example,

o - bh°oYoo (e, t),

where b °and bm are complex constants satisfying

ZX X *oo Y _oXgo- (b) _, (b: - c O.,

so that (5.12) can be used to put c = 1, resulting in

By choosing

(3.20) can be used to put

0= i +

so that X now has the form

1+.

After defining the quantity

the transformation

(5.17)

r (5 .18)

(5.19)s =-- Co (LV)+LL°

(5.15a)

(5.15b)

(5.16)X2+X o $X'- oX toY = I

G(it, k-)- Re cP

1(UI t, i)
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and noting that

SR =Z V [ (~-+ V 02 )_, +(5.20)

equation (5.4e) can be written in the much simpler form

Irnf~X.~- 9~2 (#s)j~ ~(5.21)

In order to maintain regularity, transformation (3.17) must

be restricted to the fractional linear transformation

'/ a.jb 1 / a b/ ,, A(5.22)
c t+d d c

under which

-3- 2 V -3 2 (5.23)

This means that the operator 7T' 0 /) of reference [4]

(which commutes with (5.22)) can be applied to (5.21) with the

following result. (The proof of this may be found in the appendix.)

o = 7,0,,) ,EX.£-3 ~l2$( )7= z.n m .X(5-24)

Thus, ,/ is real, which means that

j p= ° , (5.25)

and (5.22) can be used to put

X =V= /e (5.26)
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Furthermore, L -- S = - and- /e26PrS A30 Pand

(5.21) becomes simply

s 2So 3 = ° r (5.27)

so that L and 5E are purely = 1 quantities.

Finally (5.4 a) and (5.4b) yield

-. e = constant (5.28)

and the solution is indeed the Kerr-Newman metric.
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Appendix

Let f ~ ) be a spin zero function on the sphere, expandable

in spherical harmonics

/v ~ (A1)
1= o + +) (Al)=)

such that under (5.22)

5/ R -3 T .;r(A2)

Then from [4] or [221 we find that

: o Yoo (t) f ooo (t,' t' '> t ')c 'L

3-' ~ ,t',. &~ (o ;~}(t i Oa. B(A3)

where iag1 is the area element of the unit sphere.

Substitution of (Al) into (A3) then yields

/ , - t 3 (A4)

where the orthogonality properties of the spherical harmonics have

been used.

Now let

q _ /

-

3 _ (S (A5)

The subscripts again refer to the 2 -values of the quantities and

0( e= 2) means that the expression is expandable in harmonics with

1 - 2.
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Since

(A6)

under (5.22), ( ) has spin weight minus two so that

o (2R-2),

and

(A8)77io,,j ( }s) = O.

By applying to X = t0o-4- */ , we

obtain

(A9)3Po o X - - 2 )-+2to

and this together with (5.16) yields

CoX Wxo l _= -x +2 o X- /.
(A10)

Dividing (5.16) by X 3 and using (A9) and (AlO) then yields

the identity

(All)XJ/ --+t C-4Y0 ;O _o; X +- z Zro [X - YO 3e]

= o t- oR=l/)

from which we immediately conclude that

(- o0 = .0 (A12)

(A7)

(ok -2i e-ZiAI ( Z )

I 2 ( S ) =
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Similarly, by forming gZ LX 2' 0. (Xz 2ox)]

and again using (A9) and (A10) we obtain

Xt 3
-

4So - X So {Z - So )-3 '~oz

= o - 3 , - O 1 =2), (A13)

so that

= - - 3 . (A14)

Substitution of (A13) and (A14) into (A4) then yields

71os/) -x 3_ ,t( r)l = X e (A15)


